"""
Sampling history for MCMC.
MCMC keeps track of a number of things during sampling.
The results may be queried as follows::
draws, generation, thinning, total_generations
sample(condition) returns draws, points, logp
logp() returns draws, logp
acceptance_rate() returns draws, AR
chains() returns draws, chains, logp
CR_weight() returns draws, CR_weight
best() returns best_x, best_logp
outliers() returns outliers
show()/save(file)/load(file)
Data is stored in circular arrays, which keeps the last N generations and
throws the rest away.
draws is the total number of draws from the sampler.
generation is the total number of generations. Due to tests for partially
full circular buffers throughout the code (state.generation < state.Ngen)
we are resetting generation to the size of the stored history on resume,
and setting the generation_offset to the start of the history. If you need the
number of generations across resume then use total_generations.
thinning is the number of generations per stored sample.
draws[i] is the number of draws including those required to produce the
information in the corresponding return vector. Note that draw numbers
need not be linearly spaced, since techniques like delayed rejection
will result in a varying number of samples per generation.
logp[i] is the set of log likelihoods, one for each member of the population.
The logp() method returns the complete set, and the sample() method returns
a thinned set, with on element of logp[i] for each vector point[i, :].
AR[i] is the acceptance rate at generation i, showing the proportion of
proposed points which are accepted into the population.
chains[i, :, :] is the set of points in the differential evolution population
at thinned generation i. Ideally, the thinning rate of the MCMC process
is chosen so that thinned generations i and i+1 are independent samples
from the posterior distribution, though there is a chance that this may
not be the case, and indeed, some points in generation i+1 may be identical
to those in generation i. Actual generation number is i*thinning.
points[i, :] is the ith point in a returned sample. The i is just a place
holder; there is no inherent ordering to the sample once they have been
extracted from the chains. Note that the sample may be from a marginal
distribution.
R[i] is the Gelman R statistic measuring convergence of the Markov chain.
CR_weight[i] is the set of weights used for selecting between the crossover
ratios available to the candidate generation process of differential
evolution. These will be fixed early in the sampling, even when adaptive
differential evolution is selected.
outliers[i] is a vector containing the thinned generation number at which
an outlier chain was removed, the id of the chain that was removed and
the id of the chain that replaced it. We leave it to the reader to decide
if the cloned samples, point[:generation, :, removed_id], should be included
in further analysis.
best_logp is the highest log likelihood observed during the analysis and
best_x is the corresponding point at which it was observed.
generation is the last generation number
"""
# TODO: state should be collected in files as we go
__all__ = ["MCMCDraw", "load_state", "save_state"]
import os.path
import re
import gzip
from typing import List, Dict, Tuple, Literal, Union, Optional, Callable
from pathlib import Path
import numpy as np
from numpy import empty, sum, asarray, inf, argmax, hstack, dstack
from numpy import savetxt, reshape
from numpy.typing import NDArray
from .convergence import burn_point
from .outliers import identify_outliers
from .util import draw, rng
from .gelman import gelman
# Don't load hdf5 if you don't need it
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from h5py import Group
else:
class Group: ...
EXT = ".mc.gz"
CREATE = gzip.open
# EXT = ".mc"
# CREATE = open
SelectionType = Optional[Dict[Union[int, Literal["logp"]], Tuple[float, float]]]
UNCERTAINTY_DTYPE = "d"
MAX_LABEL_LENGTH = 1024
LABEL_DTYPE = f"|S{MAX_LABEL_LENGTH}"
H5_COMPRESSION = 5
def _h5_write_field(group: "Group", field: str, data: Union[NDArray, str]):
import h5py
# print(f"h5 writing {field} in {group} with {data}")
if isinstance(data, str):
dtype = h5py.string_dtype(encoding="utf-8", length=len(data))
return group.create_dataset(field, data=data, dtype=dtype)
elif isinstance(data, (int, np.integer)):
return group.create_dataset(field, data=data, dtype=np.int64)
elif isinstance(data, (float, np.floating)):
return group.create_dataset(field, data=data, dtype=np.double)
else:
return group.create_dataset(field, data=data, dtype=data.dtype, compression=H5_COMPRESSION)
def _h5_read_field(group: "Group", field: str):
raw_data = group[field][()]
size = raw_data.size
if isinstance(raw_data, np.integer):
return int(raw_data)
elif isinstance(raw_data, np.floating):
return float(raw_data)
elif size is not None and size > 0:
return raw_data
else:
return None
def h5dump(group: "Group", state: "MCMCDraw"):
class Fields:
total_generations = state.total_generations
thinning = state.thinning
gen_draws, gen_logp = state.logp(full=True)
_, AR = state.acceptance_rate()
thin_draws, thin_point, thin_logp = state.chains()
update_draws, update_CR_weight = state.CR_weight()
labels = np.array(state.labels, dtype=LABEL_DTYPE)
# These are marked outliers. They should still be marked when reloading the
# state, but they need to be cleared when updates are given. Make sure the
# request for the population from dream includes the outliers.
good_chains = None if isinstance(state._good_chains, slice) else state._good_chains
best_x, best_logp = state.best()
best_gen = state._best_gen
portion = state.portion
# print(f"wrote {Fields.total_generations} generations")
# print(f"{state._gen_offset=} {state.Ngen=}")
# print("wrote", Fields.__dict__)
for field, value in Fields.__dict__.items():
if field[0] != "_" and value is not None:
_h5_write_field(group, field, value)
def h5load(group: "Group"):
# print(f"dream.state.h5load {group}")
class Fields: ...
for field in group:
setattr(Fields, field, _h5_read_field(group, field))
# print("read", Fields.__dict__)
# Guess dimensions
Ngen = Fields.gen_draws.shape[0]
Nthin, Npop, Nvar = Fields.thin_point.shape
Nupdate, Ncr = Fields.update_CR_weight.shape
# Nthin -= skip
good_chains = getattr(Fields, "good_chains", None)
total_generations = getattr(Fields, "total_generations", Ngen)
thinning = getattr(Fields, "thinning", 1)
best_x = getattr(Fields, "best_x", None)
best_logp = getattr(Fields, "best_logp", 0.0)
best_gen = getattr(Fields, "best_gen", 0)
portion = getattr(Fields, "portion", 1.0)
# Create empty draw and fill it with loaded data
state = MCMCDraw(0, 0, 0, 0, 0, 0, thinning, portion=portion)
state.draws = Ngen * Npop
state.labels = [label.decode() for label in Fields.labels]
state.generation = Ngen
# print(f"loading {total_generations=} {Ngen=}")
state._gen_offset = total_generations - Ngen
state._gen_index = 0
state._gen_draws = Fields.gen_draws.astype(int)
state._gen_acceptance_rate = Fields.AR
state._gen_logp = Fields.gen_logp
state._thin_count = Nthin
state._thin_index = 0
state._thin_draws = Fields.thin_draws.astype(int)
state._thin_logp = Fields.thin_logp
state._thin_point = Fields.thin_point
state._gen_current = state._thin_point[-1].copy()
state._update_count = Nupdate
state._update_index = 0
state._update_draws = Fields.update_draws.astype(int)
state._update_CR_weight = Fields.update_CR_weight
state._outliers = []
if best_x is not None:
state._best_x = best_x
state._best_logp = best_logp
state._best_gen = best_gen
else:
bestidx = np.unravel_index(np.argmax(Fields.thin_logp), Fields.thin_logp.shape)
state._best_logp = Fields.thin_logp[bestidx]
state._best_x = Fields.thin_point[bestidx]
# We are not multiplying the following by thinning because thinning and best_gen
# were added at the same time, so the reloaded thinning=1. Even if it were not
# one this could still be wrong since thinning may have changed on resume.
state._best_gen = bestidx[0]
state._good_chains = slice(None, None) if good_chains is None else good_chains.astype(int)
return state
[docs]
def save_state(state: "MCMCDraw", filename: str):
# import sys; trace = sys.stdout
# trace = open(filename+"-trace.mc", "wt")
# trace.write("starting trace\n")
# Build 2-D data structures
# trace.write("extracting draws, logp\n")
draws, logp = state.logp(full=True)
# trace.write("extracting acceptance rate\n")
_, AR = state.acceptance_rate()
# trace.write("building chain from draws, AR and logp\n")
chain = hstack((draws[:, None], AR[:, None], logp))
# trace.write("extracting point, logp\n")
_, point, logp = state.chains()
Nthin, Npop, Nvar = point.shape
# trace.write("shape is %d,%d,%d\n" % (Nthin, Npop, Nvar))
# trace.write("adding logp to point\n")
point = dstack((logp[:, :, None], point))
# trace.write("collapsing to draws x point\n")
point = reshape(point, (point.shape[0] * point.shape[1], point.shape[2]))
# trace.write("extracting CR_weight\n")
draws, CR_weight = state.CR_weight()
Nupdate, Ncr = CR_weight.shape
# trace.write("building stats\n")
stats = hstack((draws[:, None], CR_weight))
# TODO: missing _outliers from save_state
# Write convergence info
# trace.write("writing chain\n")
fid = CREATE(filename + "-chain" + EXT, "wb")
fid.write(f"# draws acceptance_rate {Npop}*logp\n".encode())
savetxt(fid, chain)
fid.close()
# Write point info
# trace.write("writing point\n")
fid = CREATE(filename + "-point" + EXT, "wb")
fid.write(f"# logp point (Nthin x Npop x Nvar = [{Nthin},{Npop},{Nvar}])\n".encode())
savetxt(fid, point)
fid.close()
# Write stats
# trace.write("writing stats\n")
fid = CREATE(filename + "-stats" + EXT, "wb")
fid.write(f"# draws {Ncr}*CR_weight\n".encode())
savetxt(fid, stats)
fid.close()
# trace.write("done state save\n")
# trace.close()
IND_PAT = re.compile("-1#IND")
INF_PAT = re.compile("1#INF")
def loadtxt(file, report=0):
"""
Like numpy loadtxt, but adapted for windows non-finite numbers.
"""
if not hasattr(file, "readline"):
if file.endswith(".gz"):
# print("opening with gzip")
fh = gzip.open(file, "rt")
else:
fh = open(file, "rt")
else:
fh = file
res = []
section = 0
lineno = 0
for line in fh:
lineno += 1
if report and lineno % report == 0:
print("read", section * report)
section += 1
IND_PAT.sub("nan", line)
INF_PAT.sub("inf", line)
line = line.split("#")[0].strip()
values = line.split()
if len(values) > 0:
try:
res.append([float(v) for v in values])
except ValueError:
print("Parse error:", values)
if fh != file:
fh.close()
return asarray(res)
def path_contains_saved_state(filename):
chain_file = filename + "-chain" + EXT
return os.path.exists(chain_file)
def openmc(filename):
if filename.endswith(".gz"):
if os.path.exists(filename):
# print("opening with gzip")
fh = gzip.open(filename, "rt")
elif os.path.exists(filename[:-3]):
fh = open(filename[:-3], "rt")
else:
raise RuntimeError("file %s does not exist" % filename)
else:
if os.path.exists(filename):
fh = open(filename, "rt")
elif os.path.exists(filename + ".gz"):
# print("opening with gzip")
fh = gzip.open(filename + ".gz", "rt")
else:
raise RuntimeError("file %s does not exist" % filename)
return fh
[docs]
def load_state(filename, skip=0, report=0, derived_vars=0):
"""
*filename* is the path to the saved MCMC state up to the final -chain.mc, etc.
*derived_vars* is the number of columns added to each point, derived
from other columns in that point. The newer set_derived_vars interface generates
the derived variables on demand rather than storing them in the state object and
so it will be zero always.
"""
# Read chain file
with openmc(filename + "-chain" + EXT) as fid:
chain = loadtxt(fid)
# Read point file
with openmc(filename + "-point" + EXT) as fid:
line = fid.readline()
point_dims = line[line.find("[") + 1 : line.find("]")]
Nthin, Npop, Nvar = eval(point_dims)
for _ in range(skip * Npop):
fid.readline()
point = loadtxt(fid, report=report * Npop)
# Read stats file
with openmc(filename + "-stats" + EXT) as fd:
stats_header = fd.readline()
stats = loadtxt(fd)
# Determine number of R-stat stored in the stats file
if "R-stat" in stats_header:
# Old header looks like:
# # draws {Nvar}*R-stat {Ncr}*CR_weight
# however, number of R-stat stored in stats file is the number of
# variables stored each generation, not including the derived variables
# calculated after the MCMC has completed.
num_r = int(stats_header.split("*")[0].split()[-1]) - derived_vars
else:
num_r = 0
# Guess dimensions
Ngen = chain.shape[0]
thinning = 1
Nthin -= skip
Nupdate = stats.shape[0]
# Create empty draw and fill it with loaded data
state = MCMCDraw(0, 0, 0, 0, 0, 0, thinning)
# print("gen, var, pop", Ngen, Nvar, Npop)
state.draws = Ngen * Npop
state.generation = Ngen
state._gen_offset = 0
state._gen_index = 0
state._gen_draws = chain[:, 0]
state._gen_acceptance_rate = chain[:, 1]
state._gen_logp = chain[:, 2:]
state._thin_count = Ngen // thinning
state._thin_index = 0
state._thin_draws = state._gen_draws[(skip + 1) * thinning - 1 :: thinning]
state._thin_logp = point[:, 0].reshape((Nthin, Npop))
state._thin_point = reshape(point[:, 1 : Nvar + 1 - derived_vars], (Nthin, Npop, -1))
state._gen_current = state._thin_point[-1].copy()
state._update_count = Nupdate
state._update_index = 0
state._update_draws = stats[:, 0]
state._update_CR_weight = stats[:, 1 + num_r :]
state._outliers = []
bestidx = np.argmax(point[:, 0])
state._best_logp = point[bestidx, 0]
state._best_x = point[bestidx, 1 : Nvar + 1 - derived_vars]
state._best_gen = 0
return state
[docs]
class MCMCDraw(object):
""" """
_derived_fn: Callable[[NDArray], NDArray] = None
_derived_labels: List[str] = None
_labels = None
_integer_vars = None # boolean array of integer variables, or None
title = None
def __init__(
self, Ngen: int, Nthin: int, Nupdate: int, Nvar: int, Npop: int, Ncr: int, thinning: int, portion: float = 1.0
):
# self.generation and self.draws are used to control the number of iterations in
# the dream loop, and must therefore be set to the current size of the state on
# resume rather than the cumulative across all runs. To retrieve the totals use
# generations=self.total_generations and draws=self.total_generations*self.Npop.
# Total number of draws so far
self.draws = 0
# Portion: a fraction of the chain to use for statistical plots. A value can be
# automatically determined by calling self.trim_portion(), or supplied by the
# user interactively. The value should be between 0.0 and 1.0, where 1.0
# means the entire chain is used for statistical plots.
self.portion = portion
# Maximum observed likelihood
# Note: with thinning and burn the best may not be in the set of samples
self._best_x = None
self._best_logp = -inf
self._best_gen = 0
# Per generation iteration
self.generation = 0
self._gen_offset = 0
self._gen_index = 0
self._gen_draws = empty(Ngen, "i")
self._gen_logp = empty((Ngen, Npop))
self._gen_acceptance_rate = empty(Ngen)
# If we are thinning, we need to keep the current generation
# separately. [Note: don't remember why we need both the _gen_*
# and _thin_*] [Note: the caller x vector is assigned to
# _gen_current; this may lead to unexpected behaviour if x is
# changed by the caller.
self._gen_current = None
# Per thinned generation iteration
self.thinning = thinning
self._thin_index = 0
self._thin_count = 0
self._thin_timer = 0
self._thin_draws = empty(Nthin, "i")
self._thin_point = empty((Nthin, Npop, Nvar))
self._thin_logp = empty((Nthin, Npop))
# Per update iteration
self._update_index = 0
self._update_count = 0
self._update_draws = empty(Nupdate, "i")
self._update_CR_weight = empty((Nupdate, Ncr))
self._outliers = []
# Query functions will not return outlier chains; initially, all
# chains are marked as good. Call mark_outliers to remove
# outlier chains from the set.
self._good_chains = slice(None, None)
@property
def Ngen(self):
return self._gen_draws.shape[0]
@property
def total_generations(self):
return self._gen_offset + self.generation
@property
def Nsamples(self):
return self._gen_logp.size
@property
def Nthin(self):
return self._thin_draws.shape[0]
@property
def Nupdate(self):
return self._update_draws.shape[0]
@property
def Nvar(self):
"""Number of parameters in the fit"""
return self._thin_point.shape[2]
@property
def Npop(self):
return self._gen_logp.shape[1]
@property
def Ncr(self):
return self._update_CR_weight.shape[1]
[docs]
def resize(self, Ngen: int, Nthin: int, Nupdate: int, Nvar: int, Npop: int, Ncr: int, thinning: int):
if self.Nvar != Nvar or self.Npop != Npop or self.Ncr != Ncr:
raise ValueError("Cannot change Nvar, Npop or Ncr on resize")
# print("resize")
# print(self.generation, self.Ngen, Ngen)
# print(self._update_count, self.Nupdate, Nupdate)
# print(self._thin_count, self.Nthin, Nthin)
# When resuming from live state, make sure we unroll the state before resizing.
# This is probably a no-op since plotting will already have forced an unroll.
self._unroll()
self.thinning = thinning
def buf_resize(v, new_size, position):
"""
Resize a circular buffer to *new_size*.
*position* is the number of entries that have been added to the buffer. This
may be less than the existing size if the buffer is not yet filled with one
complete cycle. Assume the buffer has been unrolled so that the next location
index is zero. Don't assume that the next location index is *position%size*.
When extending, we add space to the end of the buffer and set the next index
after the previous end of the buffer. When contracting, we keep the last N entries
in the buffer. If there are fewer than N entries, keep all of them and include
enough empty entries to make the buffer size N.
Need to set the next index to min(position, old_size, new_size)%new_size
"""
if v.shape[0] < new_size: # expand
v = np.resize(v, (new_size, *v.shape[1:]))
elif position < new_size: # contract when not enough
v = v[:new_size]
else: # contract when have enough
v = v[-new_size:]
return v
self._gen_offset += max(self.generation - Ngen, 0)
self.generation = min(self.generation, Ngen, self.Ngen)
self.draws = self.generation * self.Npop
self._gen_index = 0
# Reset sample size to current size on resume.
self.generation = min(self.generation, self.Ngen, Ngen)
self.draws = self.generation * self.Npop
self._gen_index = self.generation % Ngen
self._gen_draws = buf_resize(self._gen_draws, Ngen, self.generation)
self._gen_logp = buf_resize(self._gen_logp, Ngen, self.generation)
self._gen_acceptance_rate = buf_resize(self._gen_acceptance_rate, Ngen, self.generation)
self._thin_count = min(self._thin_count, self.Nthin, Nthin)
self._thin_index = self._thin_count % Nthin
self._thin_draws = buf_resize(self._thin_draws, Nthin, self._thin_count)
self._thin_point = buf_resize(self._thin_point, Nthin, self._thin_count)
self._thin_logp = buf_resize(self._thin_logp, Nthin, self._thin_count)
self._update_count = min(self._update_count, self.Nupdate, Nupdate)
self._update_index = self._update_count % Nupdate
self._update_draws = buf_resize(self._update_draws, Nupdate, self._update_count)
self._update_CR_weight = buf_resize(self._update_CR_weight, Nupdate, self._update_count)
[docs]
def save(self, filename: Union[Path, str]):
save_state(self, filename)
[docs]
def trim_portion(self):
index = burn_point(self)
portion = 1 - (index / self.Ngen) if index >= 0 else 0.5
return portion
[docs]
def show(self, portion: Optional[float] = None, figfile: Union[str, Path, None] = None):
from .views import plot_all
plot_all(self, portion=portion, figfile=figfile)
def _last_gen(self):
"""
Returns x, logp for most recent generation to dream.py.
"""
# Note: if generation number has wrapped and _gen_index is 0
# (the usual case when this function is called to resume an
# existing chain), then this returns the last row in the array.
return (self._thin_point[self._thin_index - 1], self._thin_logp[self._thin_index - 1])
def _generation(self, new_draws: int, x: NDArray, logp: NDArray, accept: NDArray, force_keep: bool = False):
"""
Called from dream.py after each generation is completed with
a set of accepted points and their values.
"""
# Keep track of the total number of draws
# Note: this is first so that we tag the record with the number of
# draws taken so far, including the current draw.
self.draws += new_draws
self.generation += 1
# Record if this is the best so far
maxid = argmax(logp)
if logp[maxid] > self._best_logp:
self._best_logp = logp[maxid]
self._best_x = x[maxid, :] + 0 # Force a copy
self._best_gen = self.total_generations
# print("new best", logp[maxid], self.generation)
# Record acceptance rate and cost
i = self._gen_index
# print("generation", i, self.draws, "\n x", x, "\n logp", logp, "\n accept", accept)
self._gen_draws[i] = self.draws
self._gen_acceptance_rate[i] = 100 * sum(accept) / new_draws
self._gen_logp[i] = logp
i = i + 1
if i == len(self._gen_draws):
i = 0
self._gen_index = i
# Keep every nth iteration
self._thin_timer += 1
if self._thin_timer == self.thinning or force_keep:
self._thin_timer = 0
self._thin_count += 1
i = self._thin_index
self._thin_draws[i] = self.draws
self._thin_point[i] = x
self._thin_logp[i] = logp
i = i + 1
if i == len(self._thin_draws):
i = 0
self._thin_index = i
self._gen_current = x + 0 # force a copy
else:
self._gen_current = x + 0 # force a copy
def _update(self, CR_weight: NDArray):
"""
Called from dream.py when a series of DE steps is completed and
summary statistics/adaptations are ready to be stored.
"""
self._update_count += 1
i = self._update_index
# print("update", i, self.draws, "\n CR weight", CR_weight)
self._update_draws[i] = self.draws
self._update_CR_weight[i] = CR_weight
i = i + 1
if i == len(self._update_draws):
i = 0
self._update_index = i
@property
def labels(self):
if self._labels is None:
result = ["P%d" % i for i in range(self._thin_point.shape[2])]
else:
result = self._labels
if self._derived_labels:
result = [*result, *self._derived_labels]
return result
@labels.setter
def labels(self, v: List[str]):
self._labels = v
def _draw_pop(self):
"""
Return the current population.
"""
return self._gen_current
def _draw_large_pop(self, Npop: int):
_, chains, _ = self.chains()
Ngen, Nchain, Nvar = chains.shape
points = reshape(chains, (Ngen * Nchain, Nvar))
# There are two complications with the history buffer:
# (1) due to thinning, not every generation is stored
# (2) because it is circular, the cursor may be in the middle
# If the current generation isn't in the buffer (but is instead
# stored separately as _gen_current), then the entire buffer
# becomes the history pool.
# otherwise we need to exclude the current generation from
# the pool. If (2) happens, we need to increment everything
# above the cursor by the number of chains.
if self._gen_current is not None:
pool_size = Ngen * Nchain
cursor = pool_size # infinite
else:
pool_size = (Ngen - 1) * Nchain
k = len(self._thin_draws)
cursor = Nchain * ((k + self._thin_index - 1) % k)
# Make a return population and fill it with the current generation
pop = empty((Npop, Nvar), "d")
if self._gen_current is not None:
pop[:Nchain] = self._gen_current
else:
# print(pop.shape, points.shape, chains.shape)
pop[:Nchain] = points[cursor : cursor + Nchain]
if Npop > Nchain:
# Find the remainder with unique ancestors.
# Again, because this is a circular buffer, their may be random
# numbers generated at or above the cursor. All of these must
# be shifted by Nchains to avoid the cursor.
perm = draw(Npop - Nchain, pool_size)
perm[perm >= cursor] += Nchain
# print("perm", perm; raw_input('wait'))
pop[Nchain:] = points[perm]
return pop
def _unroll(self):
"""
Unroll the circular queue so that data access can be done inplace.
Call this when done stepping, and before plotting. Calls to
logp, sample, etc. assume the data is already unrolled.
"""
if self.generation > self._gen_index > 0:
self._gen_draws[:] = np.roll(self._gen_draws, -self._gen_index, axis=0)
self._gen_logp[:] = np.roll(self._gen_logp, -self._gen_index, axis=0)
self._gen_acceptance_rate[:] = np.roll(self._gen_acceptance_rate, -self._gen_index, axis=0)
self._gen_index = 0
if self._thin_count > self._thin_index > 0:
self._thin_draws[:] = np.roll(self._thin_draws, -self._thin_index, axis=0)
self._thin_point[:] = np.roll(self._thin_point, -self._thin_index, axis=0)
self._thin_logp[:] = np.roll(self._thin_logp, -self._thin_index, axis=0)
self._thin_index = 0
if self._update_count > self._update_index > 0:
self._update_draws[:] = np.roll(self._update_draws, -self._update_index, axis=0)
self._update_CR_weight[:] = np.roll(self._update_CR_weight, -self._update_index, axis=0)
self._update_index = 0
[docs]
def remove_outliers(self, x: NDArray, logp: NDArray, test: str = "IQR"):
"""
Replace outlier chains with clones of good ones. This should happen
early in the sampling processes so the clones have an opportunity
to evolve their own identity. Only the head of the chain is modified.
*state* contains the chains, with log likelihood for each point.
*x*, *logp* are the current population and the corresponding
log likelihoods; these are updated with cloned chain values.
*test* is the name of the test to use (one of IQR, Grubbs, Mahal
or none). See :func:`.outliers.identify_outliers` for details.
Updates *state*, *x* and *logp* to reflect the changes.
Returns a list of the outliers that were removed.
"""
# Grab the last part of the chain histories
_, chains = self.logp()
chain_len, Nchains = chains.shape
outliers = identify_outliers(test, chains, x)
# if len(outliers): print("old llf", logp[outliers])
# Loop over each outlier chain, replacing each with another
for old in outliers:
# Draw another chain at random, with replacement
# TODO: consider using relative likelihood as a weight factor
while True:
new = rng.randint(Nchains)
if new not in outliers:
break
# Update the saved state and current population
self._replace_outlier(old=old, new=new)
x[old, :] = x[new, :]
logp[old] = logp[new]
# if len(outliers): print("new llf", logp[outliers])
return outliers
def _replace_outlier(self, old: int, new: int):
"""
Called from outliers.py when a chain is replaced by the
clone of another.
"""
self._outliers.append((self._thin_index, old, new))
# 2017-10-06 [PAK] only replace the head, not the full chain
index = self._gen_index
self._gen_current[old] = self._gen_current[new]
self._gen_logp[index, old] = self._gen_logp[index, new]
self._thin_logp[index, old] = self._thin_logp[index, new]
self._thin_point[index, old, :] = self._thin_point[index, new, :]
[docs]
def mark_outliers(self, test: str = "IQR", portion: Optional[float] = None):
"""
Mark some chains as outliers but don't remove them. This can happen
after drawing is complete, so that chains that did not converge are
not included in the statistics.
*test* is 'IQR', 'Mahol' or 'none'.
*portion* indicates what portion of the samples should be included
in the outlier test. If None, then the stored portion is used.
"""
_, chains, logp = self.chains()
if test == "none":
self._good_chains = slice(None, None)
else:
Ngen = chains.shape[0]
portion = self.portion if portion is None else portion
start = int(Ngen * (1 - portion))
outliers = identify_outliers(test, logp[start:], chains[-1])
# print("outliers", outliers)
# print(logp.shape, chains.shape)
if len(outliers) > 0:
self._good_chains = np.array([i for i in range(logp.shape[1]) if i not in outliers])
else:
self._good_chains = slice(None, None)
# print(self._good_chains)
[docs]
def logp(self, full: bool = False):
"""
Return the iteration number and the log likelihood for each point in
the individual sequences in that iteration.
For example, to plot the convergence of each sequence::
draw, logp = state.logp()
plot(draw, logp)
Note that draw[i] represents the total number of samples taken,
including those for the samples in logp[i].
If full is True, then return all chains, not just good chains.
"""
# self._unroll()
# draws, logp = self._gen_draws, self._gen_logp
# if self.generation == self._gen_index:
# draws, logp = [v[:self.generation] for v in (draws, logp)]
# Don't do a full unroll here
if self.generation == self._gen_index:
draws = self._gen_draws[: self._gen_index]
logp = self._gen_logp[: self._gen_index]
elif self._gen_index > 0:
draws = np.roll(self._gen_draws, -self._gen_index, axis=0)
logp = np.roll(self._gen_logp, -self._gen_index, axis=0)
else:
draws = self._gen_draws
logp = self._gen_logp
# TODO: just return logp, not logp and draws
return draws, (logp if full else logp[:, self._good_chains])
[docs]
def logp_slice(self, n: int):
"""
Return a slice of the logp chains, either the first n if n > 0
or the last n if n < 0. Avoids unrolling the circular buffer if
possible.
"""
if n < 0: # tail
if self._gen_index >= -n:
return self._gen_logp[self._gen_index + n : self._gen_index]
elif self._gen_index == 0:
return self._gen_logp[n:]
else: # unroll across boundary
return np.vstack((self._gen_logp[n + self._gen_index :], self._gen_logp[: self._gen_index]))
else: # head
if self.generation < self.Ngen:
return self._gen_logp[:n]
elif self._gen_index + n <= self.Ngen:
return self._gen_logp[self._gen_index : self._gen_index + n]
else:
return np.vstack((self._gen_logp[self._gen_index :], self._gen_logp[-n + self._gen_index :]))
[docs]
def min_slice(self, n: int):
"""
Return the minimum logp for n slices, from the head if positive
or the tail if negative.
This is a specialized function so it can be fast. Convergence
can be quickly rejected if the min in a short head is smaller
than the min in a long tail. Unfortunately, if the data is
wrapped, then the max function will cost extra.
"""
# Copy the logic of slice
if n < 0: # tail
if self._gen_index >= -n:
return np.min(self._gen_logp[self._gen_index + n : self._gen_index])
elif self._gen_index == 0:
return np.min(self._gen_logp[n:])
else: # max across boundary
return min(np.min(self._gen_logp[n + self._gen_index :]), np.min(self._gen_logp[: self._gen_index]))
else: # head
if self.generation < self.Ngen:
return np.min(self._gen_logp[:n])
elif self._gen_index + n <= self.Ngen:
return np.min(self._gen_logp[self._gen_index : self._gen_index + n])
else:
return min(np.min(self._gen_logp[self._gen_index :]), np.min(self._gen_logp[-n + self._gen_index :]))
[docs]
def acceptance_rate(self):
"""
Return the iteration number and the acceptance rate for that iteration.
For example, to plot the acceptance rate over time::
draw, AR = state.acceptance_rate()
plot(draw, AR)
"""
retval = self._gen_draws, self._gen_acceptance_rate
if self.generation == self._gen_index:
retval = [v[: self.generation] for v in retval]
elif self._gen_index > 0:
retval = [np.roll(v, -self._gen_index, axis=0) for v in retval]
return retval
[docs]
def chains(self):
"""
Returns the observed Markov chains and the corresponding likelihoods.
The return value is a tuple (*draws*, *chains*, *logp*).
*draws* is the number of samples taken up to and including the samples
for the current generation.
*chains* is a three dimensional array of generations X chains X vars
giving the set of points observed for each chain in every generation.
Only the thinned samples are returned.
*logp* is a two dimensional array of generation X population giving
the log likelihood of observing the set of variable values given in
chains.
"""
self._unroll()
retval = self._thin_draws, self._thin_point, self._thin_logp
if self._thin_count == self._thin_index:
retval = [v[: self._thin_count] for v in retval]
return retval
[docs]
def gelman(self, portion: Optional[float] = None):
"""
Compute the Gelman and Rubin R-statistic for the Markov chains.
"""
portion = self.portion if portion is None else portion
if self.generation < self.Ngen:
return gelman(self._thin_point[: self.generation], portion=portion)
else:
return gelman(self._thin_point, portion=portion)
[docs]
def CR_weight(self):
"""
Return the crossover ratio weights to be used in the next generation.
For example, to see if the adaptive CR is stable use::
draw, weight = state.CR_weight()
plot(draw, weight)
See :mod:`.crossover` for details.
"""
self._unroll()
retval = self._update_draws, self._update_CR_weight
if self._update_count == self._update_index:
retval = [v[: self._update_count] for v in retval]
return retval
[docs]
def outliers(self):
"""
Return a list of outlier removal operations.
Each outlier operation is a tuple giving the thinned generation
in which it occurred, the old chain id and the new chain id.
The chains themselves have already been updated to reflect the
removal.
Curiously, it is possible for the maximum likelihood seen so far
to be removed by this operation.
"""
return asarray(self._outliers, "i")
[docs]
def best(self):
"""
Return the best point seen and its log likelihood.
"""
return self._best_x, self._best_logp
[docs]
def stable_best(self):
"""
Return True if the at least one full cycle of the circular
buffer has passed since the best logp was first observed.
"""
# print(f"stable_best {self._best_gen} + {self.Ngen} <= {self.total_generations}")
return self._best_gen + self.Ngen <= self.total_generations
[docs]
def keep_best(self):
"""
Place the best point at the end of the last good chain.
Good chains are defined by mark_outliers.
Because the Markov chain is designed to wander the parameter
space, the best individual seen during the random walk may have
been observed during the burn-in period, and may no longer be
present in the chain. If this is the case, replace the final
point with the best, otherwise swap the positions of the final
and the best.
"""
# Get state as a 1D array
_, chains, logp = self.chains()
Ngen, Npop, Nvar = chains.shape
points = reshape(chains, (Ngen * Npop, Nvar))
logp = reshape(logp, Ngen * Npop)
# Set the final position to the end of the last good chain. If
# mark_outliers has not been called, then _good_chains will
# just be slice(None, None)
if isinstance(self._good_chains, slice):
final = -1
else:
final = self._good_chains[-1] - Npop
# Find the location of the best point if it exists and swap with
# the final position
idx = np.where(logp == self._best_logp)[0]
if len(idx) == 0:
logp[final] = self._best_logp
points[final, :] = self._best_x
else:
idx = idx[0]
logp[final], logp[idx] = logp[idx], logp[final]
points[final, :], points[idx, :] = points[idx, :], points[final, :]
# For multiple minima, arbitrarily choose one of them
# TODO: this will lead to possible confusion when the best value
# spontaneously changes when the fit is complete.
self._best_p = points[final]
self._best_logp = logp[final]
[docs]
def sample(self, **kw):
"""
Return a sample from the posterior distribution.
**Deprecated** use :meth:`draw` instead.
"""
drawn = self.draw(**kw)
return drawn.points, drawn.logp
[docs]
def entropy(
self,
vars: Optional[List[int]] = None,
portion: Optional[float] = None,
selection: SelectionType = None,
n_est: int = 10000,
thin: Optional[int] = None,
method: Optional[str] = None,
):
r"""
Return entropy estimate and uncertainty from an MCMC draw.
*portion* is the portion of each chain to use (uses self.portion if None).
*vars* is the set of variables to marginalize over. It is None for
the visible variables, or a list of variables.
*vars* is the list of variables to use for marginalization.
*selection* sets the range each parameter in the returned distribution,
using {variable: (low, high)}. Missing variables use the full range.
*n_est* is the number of points to use from the draw when estimating
the entropy (default=10000).
*thin* is the amount of thinning to use when selecting points from the
draw.
*method* determines which entropy calculation to use:
* gmm: fit sample to a gaussian mixture model (GMM) with $5 \sqrt{d}$
components where $d$ is the number fitted parameters and estimate
entropy by sampling from the GMM.
* llf: estimates likelihood scale factor from ratio of density
estimate to model likelihood, then computes Monte Carlo entropy
from sample; this does not work for marginal likelihood estimates.
DOI:10.1109/CCA.2010.5611198
* mvn: fit sample to a multi-variate Gaussian and return the entropy
of the best fit gaussian; uses bootstrap to estimate uncertainty.
* wnn: estimate entropy from nearest-neighbor distances in sample.
DOI:10.1214/18-AOS1688
"""
from . import entropy
# Get the sample from the state.
# set default thinning to max((steps * samples/step) // n_est, 1)
if thin is None:
Nsteps = min(self.Nthin, self._thin_count)
thin = max(Nsteps * self.Npop // n_est, 1)
# print("thin", thin, Nsteps, self.Npop, self.Nthin, self._thin_count)
drawn = self.draw(portion=portion, vars=vars, selection=selection, thin=thin)
# TODO: don't print within a library function!
M = entropy.MVNEntropy(drawn.points)
print("Entropy from MVN: %s" % str(M))
if method is None:
# TODO: change default to gmm
method = "llf"
if method == "llf":
S, Serr = entropy.entropy(drawn.points, drawn.logp, N_entropy=n_est)
# print("Entropy from llf (Kramer): %s"%str(S))
elif method == "gmm":
# Try pure gmm ... pretty good
S, Serr = entropy.gmm_entropy(drawn.points, n_est=n_est)
# print("Entropy from gmm: %g +/- %g"% (S, Serr))
elif method == "wnn":
# Try pure wnn ... no good
S, Serr = entropy.wnn_entropy(drawn.points, n_est=n_est)
# print("Entropy from wnn: %s"%str(S))
elif method == "mvn":
S, Serr = entropy.mvn_entropy_bootstrap(drawn.points)
# print("Entropy from mvn: %s"%str(S))
else:
raise ValueError("unknown method %r" % method)
# Always return entropy estimate from draw, even if it is normal
return S, Serr
[docs]
def draw(
self,
portion: Optional[float] = None,
vars: Optional[List[int]] = None,
selection: SelectionType = None,
thin: int = 1,
):
"""
Return a sample from the posterior distribution.
*portion* is the portion of each chain to use
*vars* is a list of variables to return for each point
*selection* sets the range each parameter in the returned distribution,
using {variable: (low, high)}. Missing variables use the full range.
*thin* takes every nth item.
To plot the distribution for parameter p1::
draw = state.draw()
hist(draw.points[:, 0])
To plot the interdependence of p1 and p2::
draw = state.sample()
plot(draw.points[:, 0], draw.points[:, 1], '.')
"""
vars = vars if vars is not None else getattr(self, "_shown", None)
portion = self.portion if portion is None else portion
return Draw(self, portion=portion, vars=vars, selection=selection, thin=thin)
# TODO: Move processing of visible/integer/derived out of state
[docs]
def set_visible_vars(self, labels: List[str]):
self._shown = [self.labels.index(v) for v in labels]
# print("\n".join(str(pair) for pair in enumerate(self.labels)))
# print(labels)
# print(self._shown)
[docs]
def set_integer_vars(self, labels: List[str]):
"""
Indicate tha variables should be considered integer variables when
computing statistics.
"""
self._integer_vars = np.array([var in labels for var in self.labels])
[docs]
def set_derived_vars(self, fn: Callable[[NDArray], NDArray], labels: List[str]):
"""
Define derived variables from the sample. When calling draw() it will add
columns for the derived variables to each sample.
*fn* is a function taking points p[:, k] for k in 0 ... samples and
returning a set of derived variables pj[k] for each sample k. The
variables can be returned as any kind of sequence including an
array or a tuple with one entry per variable. The caller uses
asarray to convert the returned variables into a vars X samples array.
For convenience, a single variable can be returned by itself.
*labels* are the labels to use for the derived variables.
The following example adds the new variable x+y = P[0] + P[1]::
state.derive_vars(lambda p: p[0]+p[1], labels=["x+y"])
"""
self._derived_fn = fn
self._derived_labels = labels
[docs]
def derive_vars(self, fn: Callable[[NDArray], NDArray], labels: Optional[List[str]] = None):
"""
*** DEPRECATED ***
Like set_derived_vars but operating in place, modifying the points in the history.
"""
# Grab all samples as a set of points
_, chains, _ = self.chains()
Ngen, Npop, Nvar = chains.shape
points = reshape(chains, (Ngen * Npop, Nvar))
# Compute new variables from the points
newvars = asarray(fn(points.T)).T
Nnew = newvars.shape[1] if len(newvars.shape) == 2 else 1
newvars.reshape((Ngen, Npop, Nnew))
# Extend new variables to be the same length as the stored selection
Nthin = self._thin_point.shape[0]
newvars = np.resize(newvars, (Nthin, Npop, Nnew))
# Add new variables to the points
self._thin_point = dstack((self._thin_point, newvars))
# Add labels for the new variables, if available.
if labels is not None:
self.labels = self.labels + labels
elif self._labels is not None:
labels = ["P%d" % i for i in range(Nvar, Nvar + Nnew)]
self.labels = self.labels + labels
else: # no labels specified, old or new
pass
class Draw:
state: MCMCDraw
vars: Optional[List[int]]
portion: float
selection: SelectionType
thin: int
def __init__(
self,
state: MCMCDraw,
vars: Optional[List[int]] = None,
portion: float = 1.0,
selection: SelectionType = None,
thin: int = 1,
):
self.state = state
self.vars = vars
self.portion = portion
self.selection = selection
self.points, self.logp = _sample(state, portion=portion, selection=selection, thin=thin)
# Derived variables are created during the draw so that existing data isn't altered.
# This allows resume to work without extra effort. The code is also much simpler.
if state._derived_fn is not None:
newvars = asarray(state._derived_fn(self.points.T)).T
self.points = np.vstack((self.points, newvars))
if vars is not None:
self.points = self.points[:, vars]
self.labels = state.labels if vars is None else [state.labels[v] for v in vars]
self.weights = None
self.num_vars = len(self.labels)
if state._integer_vars is not None:
self.integers = state._integer_vars[vars] if vars else None
else:
self.integers = None
self._argsort_indices = {}
# cache the argsort indices for each variable
def get_argsort_indices(self, var: int):
if var not in self._argsort_indices:
self._argsort_indices[var] = np.argsort(self.points[:, var].flatten())
return self._argsort_indices[var]
def _sample(state, portion: float, selection: SelectionType, thin):
"""
Return a sample from a set of chains.
"""
draw, chains, logp = state.chains()
start = int((1 - portion) * len(draw))
# Collect the subset we are interested in
chains = chains[start::thin, state._good_chains, :]
logp = logp[start::thin, state._good_chains]
Ngen, Npop, Nvar = chains.shape
points = reshape(chains, (-1, Nvar))
logp = reshape(logp, (-1))
if selection not in [None, {}]:
idx = True
for v, r in selection.items():
if v == "logp":
idx = idx & (logp >= r[0]) & (logp <= r[1])
else:
idx = idx & (points[:, v] >= r[0]) & (points[:, v] <= r[1])
points = points[idx, :]
logp = logp[idx]
return points, logp
def test():
from numpy.linalg import norm
from numpy.random import rand
from numpy import arange
# Make some fake data
Nupdate, Nstep = 3, 5
Ngen = Nupdate * Nstep
Nvar, Npop, Ncr = 3, 6, 2
xin = rand(Ngen, Npop, Nvar)
pin = rand(Ngen, Npop)
accept = rand(Ngen, Npop) < 0.8
CRin = rand(Nupdate, Ncr)
# thinning = 2
# Nthin = int(Ngen/thinning)
# Put it into a state
thinning = 2
Nthin = int(Ngen / thinning)
state = MCMCDraw(Ngen=Ngen, Nthin=Nthin, Nupdate=Nupdate, Nvar=Nvar, Npop=Npop, Ncr=Ncr, thinning=thinning)
for i in range(Nupdate):
state._update(CR_weight=CRin[i])
for j in range(Nstep):
gen = i * Nstep + j
state._generation(new_draws=Npop, x=xin[gen], logp=pin[gen], accept=accept[gen])
# Check that it got there
draws, logp = state.logp()
assert norm(draws - Npop * arange(1, Ngen + 1)) == 0
assert norm(logp - pin) == 0
draws, AR = state.acceptance_rate()
assert norm(draws - Npop * arange(1, Ngen + 1)) == 0
assert norm(AR - 100 * sum(accept, axis=1) / Npop) == 0
draws, logp = state.sample()
# assert norm(draws - thinning*Npop*arange(1, Nthin+1)) == 0
# assert norm(sample - xin[thinning-1::thinning]) == 0
# assert norm(logp - pin[thinning-1::thinning]) == 0
draws, CR = state.CR_weight()
assert norm(draws - Npop * Nstep * arange(Nupdate)) == 0
assert norm(CR - CRin) == 0
x, p = state.best()
bestid = argmax(pin)
i, j = bestid // Npop, bestid % Npop
assert pin[i, j] == p
assert norm(xin[i, j, :] - x) == 0
# Check that outlier updates properly
state._replace_outlier(1, 2)
outliers = state.outliers()
draws, logp = state.sample()
assert norm(outliers - asarray([[state._thin_index, 1, 2]])) == 0
# assert norm(sample[:, 1, :] - xin[thinning-1::thinning, 2, :]) == 0
# assert norm(sample[:, 2, :] - xin[thinning-1::thinning, 2, :]) == 0
# assert norm(logp[:, 1] - pin[thinning-1::thinning, 2]) == 0
# assert norm(logp[:, 2] - pin[thinning-1::thinning, 2]) == 0
from .stats import var_stats, format_vars
vstats = var_stats(state.draw())
print(format_vars(vstats))
if __name__ == "__main__":
test()